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Abstract

The telegrapher’s equations constitute a set of linear partial differential
equations that establish a mathematical correspondence between the electri-
cal current and voltage within transmission lines, taking into account factors,
such as distance and time. These equations find wide applications in the de-
sign and analysis of various systems, including integrated circuits and antennas.
This paper proposes the utilization of higher-order-logic theorem proving for a
formal analysis of the telegrapher’s equations, also referred to as the transmis-
sion line equations. Specifically, we present a formal model of the telegrapher’s
equations in both time and phasor domains. Subsequently, we employ the HOL
Light theorem prover to formally verify the solutions of the telegrapher’s equa-
tions in the phasor domain. Furthermore, we established a connection between
phasor and time-domain functions to formally verify the general solutions for
the time-domain partial differential equations for the current and voltage in
an electric transmission line. To demonstrate the practical effectiveness of our
proposed formalization, we conduct a formal analysis of a terminated transmis-
sion line and its special cases, i.e., short- and open-circuited transmission lines
commonly used in antenna design, by formally verifying the load impedance
and the voltage reflection coefficient.
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1 Introduction

Transmission line theory provides a fundamental framework for understanding and
analyzing the behavior of transmission lines in the context of their application in var-
ious domains, such as integrated circuits and antennas. It serves as a mathematical
foundation, capturing an efficient power transfer, ensuring dependable communi-
cation, optimizing system design and achieving an electromagnetic compatibility.
Therefore, electrical transmission lines play a pivotal role in the conveyance of sig-
nals and electrical energy, primarily for the transmission of power, from a source to a
load. For instance, in real life, a transmission line acts as a conduit for distributing
electricity to homes, businesses, industries, and hospitals, working in conjunction
with power generation plants and substations. Sometimes a disruption in the power
supply resulting from a transmission line breakage can lead to serious consequences.
For instance, in a hospital environment, power failures directly jeopardize the safety
of patients and medical personnel. Consequently, emphasizing the crucial impor-
tance of guaranteeing the dependability of the electrical elements in the transmission
line is essential.

Transmission lines are comprised of a minimum of two conductors that facilitate
an efficient and a reliable transmission of information and energy. A two-conductor
transmission line supports a transverse electromagnetic (TEM) wave [1], where the
electric and magnetic fields are perpendicular to each other and transverse to the
direction of propagation of waves along the transmission line. TEM waves have
a fundamental property of establishing a distinct relationship between the electric
E and the magnetic H fields, which are specifically related to the voltage V and
current I, respectively as the following Maxwell’s equations:

V = −
ˆ

L
E.dl, (1)

I =
˛

L
H.dl (2)

The analysis of transmission lines can be made simpler by only focusing on the
circuit quantities, V and I, rather than directly solving the complex line integral
based Maxwell’s equations (Equations (1) and (2)) and boundary conditions involv-
ing electric and magnetic fields (E and H). In this regard, we employ an equivalent
circuit in order to represent the transmission line’s behavior. The purpose of devel-
oping an equivalent circuit model is to simplify the intricate electromagnetic inter-
actions inherent to the transmission line, thereby reducing them to a set of lumped
elements amenable to analysis through circuit theory.
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Following the construction of the equivalent circuit, the telegrapher’s, also referred
to as the transmission line equations, can be derived using circuit analysis tech-
niques. The behavior of transmission lines is elucidated through the utilization of
the telegrapher’s equations that are based on Partial Differential Equations (PDEs)
and rigorously capture the complex electromagnetics and propagation dynamics oc-
curring within these transmission systems. Next, by applying appropriate boundary
conditions and simplification of assumptions, the telegrapher’s equations provide a
useful mathematical model for analyzing transmission lines. Furthermore, compre-
hending and analyzing their solutions is crucial to ensure the reliability and safety
of our everyday electrical systems. For instance, solutions derived from the telegra-
pher’s equations can be seamlessly integrated into the modeling of signal processing
and communications systems, such as filters, matching networks, transmission lines,
transformers, and small-signal models for transistors. Thus, our goal is to establish
foundational concepts rooted in the telegrapher’s equations, aiming to subsequently
expand this basis for the analysis of more complex engineering applications.

There are numerous analytical and numerical approaches that have been used to
solve the PDE based transmission line equations. For example, finite differences [2]
and iterative [3] methods are a few numerical approaches that are applied to obtain
the solution of these equations. These numerical techniques are highly efficient
approaches as they use recursive algorithms to find out the solution of these PDEs.
However, due to the finite precision of computer arithmetic and the involvement
of round off approximations, these methods cannot guarantee the accuracy of the
analysis. On the other hand, analytical solutions may provide a complementary
point of view by deriving a closed-form exact solution. However, such analysis is
usually done using paper-and-pencil proof methods and is hence prone to human
error, especially, for larger systems. Therefore, these conventional methods cannot
be trusted to provide accurate analysis, in particular for safety-critical applications.

Several approaches have been used to find the solutions of PDEs for the analysis
of the telegrapher’s equations. For instance, Konane et al. [4] proposed an exact
solution of the telegrapher’s equations for voltage monitoring of electrical transmis-
sion lines. Kühn [5] developed a general solution of the telegrapher’s equations for
electrically short transmission lines based on circuit theory. Similarly, Biazar et
al. [3] proposed an iterative method to obtain an approximate solution of the teleg-
rapher’s equation. However, all these contributions are based on traditional analysis
methods.

Formal methods, in particular interactive theorem proving, have also been used
for analyzing other forms of PDEs. For example, Boldo et al. [6] formally verified
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the numerical solution of the wave equation [7] using the Coq theorem prover1. Sim-
ilarly, Deniz et al. [8] formalized the one-dimensional heat equation [9] and verified
the general solution of the equation and its convergence in the HOL Light theorem
prover2. However, none of the aforementioned contributions focused on the telegra-
pher’s equations. In this paper, we present a framework for formally analyzing the
telegrapher’s equations and their analytical solutions within higher-order-logic the-
orem proving. We first provide the formal definitions of the telegrapher’s equations
and their alternate representations, i.e., the wave equations both in the time and
phasor domains by proving the relationship between these equations in the phasor
domain. We also develop the reasoning steps for the verification of the analytical
solutions of these equations, which, to the best of our knowledge, are not available in
other theorem provers. In addition, we prove some important properties of special
types of transmission line which are lossless and distortionless. In order to demon-
strate the utilization of our work, we formally analyze the terminated, short- and
open circuited transmission lines. We opted to use the HOL Light theorem prover
for the proposed formalization of the telegrapher’s equations due to the availability
of rich libraries of the multivariate calculus. The HOL Light code developed in this
paper is available at [10].

The rest of the paper is structured as follows: We present the proposed framework
for the formalization of the telegrapher’s equations in higher-order-logic in Section
2. Section 3 describes some preliminary details of the multivariate libraries of the
HOL Light theorem prover that are necessary for understanding the rest of the
paper. We present the formalization of the telegrapher’s equations and a derived
form of the wave equations in time and phasor domains alongside a verification
of their relationship in the phasor domain in Section 4. In Section 5, we provide
the formal verification of the analytical solutions of the telegrapher’s equations.
Section 6 provides the formal analysis of a terminated, short-circuited and open-
circuited transmission lines that illustrate the practical effectiveness of our proposed
formalizations. We discuss the difficulties encountered during our work and gained
experience in Section 7. Finally, Section 8 concludes the paper.

2 Proposed Methodology
The proposed approach for formally analyzing the telegrapher’s equations and their
derived form (the wave equations) using higher-order-logic theorem proving is de-
picted in Figure 1.

1https://coq.inria.fr/
2https://www.cl.cam.ac.uk/jrh13/hol-light/
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Figure 1: Proposed Methodology

The first step of our proposed approach is to formalize the telegrapher’s and the wave
equations in time and phasor domains. The formalization of these equations requires
HOL Light’s libraries of multivariate calculus, such as differential, transcendental
and complex vectors. The next step is to establish theorems that enable the for-
mal verification of solutions for these equations by leveraging the advantages of the
phasor-domain representation of these equations, which simplifies the time-domain
PDEs. Moreover, the relationship between the telegrapher’s and the wave equations
in the phasor domain is formally verified using these theorems. Subsequently, we use
the solutions in the phasor domain to verify the PDEs by establishing a relationship
between the corresponding functions in the phasor and time domains. All theorems
of the proposed framework of the telegrapher’s equations are verified in HOL Light
in a generic way in order to obtain general (universally quantified) solutions of the
related PDEs. The next step is to represent some important properties of transmis-
sion lines, such as the propagation constant and the characteristic impedance specif-
ically focusing on the case of lossless and distortionless lines. Moreover, in order to
demonstrate the practical effectiveness of the proposed formalization, we conduct a
formal analysis of terminated transmission line and its special cases short-circuited
and open-circuited tranmission lines, which are extensively used in electrical and
telecommunication systems.
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3 Preliminaries
In this section, we provide a brief overview of the HOL Light theorem prover, the
HOL Light functions and symbols and some definitions from the theory of complex
analysis of HOL Light that are necessary for understanding the rest of the paper.

3.1 HOL Light Theorem Prover
The HOL Light theorem prover [11] is a mechanized proof-assistant to construct
mathematical proofs in higher-order-logic [12]. It is implemented in OCaml [13],
which is a variant of the ML (Meta-Language) functional programming language [14].
HOL Light has a very small logical kernel, which includes some basic axioms and
primitive inference rules.

HOL Light Symbols Standard Symbols Description
@x.t(x) εx. t(x) Some x such that t(x) is true

&a N → R Type casting from Natural numbers to Reals
&num {0, 1, 2..} Positive Integers data type
Cx(a) R → C Type casting from Reals to Complex
real R Real data type

complex C Complex data type
csqrt x

√
x Complex square root function

Table 1: HOL Light Symbols
Soundness is guaranteed by ensuring that every new theorem is verified by applying
these basic axioms and inference rules or any other previously verified theorems/in-
ference rules. In HOL Light, which is based on classical logic, a theory comprises
types, constants, axioms, definitions, and theorems. HOL supports two interactive
proof methods: forward and backward. In a forward proof, users begin with theo-
rems that have already been proven and apply inference rules to arrive at the desired
theorem. On the other hand, a backward or goal-directed proof method is the op-
posite of the forward approach. It relies on the concept of tactics, which are OCaml
functions that reduce the goals into more manageable subgoals, which are verified
to conclude with the proofs of theorems. Furthermore, HOL Light contains lemmas,
which are proved as part of the more extensive proof process for theorems. The
user can choose to either utilize established lemmas or prove new lemmas as they
work towards their main objective of proving the theorems. One of the important
features of HOL Light is the availability of many automatic proof procedures that
help users in conducting proofs in an efficient manner. Table 1 summarizes some
HOL functions and symbols and their meanings that are used in this paper.
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3.2 Complex Analysis Library

We now present some of the common HOL Light functions that are used in the
proposed analysis.

Definition 3.1. Re and Im
⊢def ∀z. Re z = z$1
⊢def ∀z. Im z = z$2

The functions Re and Im represent the real and imaginary parts of a complex number,
respectively. Here, the notation z$i represents the ith component of a vector z.

Definition 3.2. Cx and ii
⊢def ∀a. Cx a = complex (a, &0)
⊢def ii = complex (&0, &1)

Cx is a type casting function with a data-type R → C. It accepts a real number
and returns its corresponding complex number with the imaginary part as zero.
Also, the types R2 and C are synonymous. The & operator has data-type N → R
and is used to map a natural number to a real number. Similarly, the function ii
(iota) represents a complex number with a real part equal to 0 and the magnitude
of the imaginary part equal to 1. In our formalization, the symbol ii is employed
to represent j denoting the imaginary number.

Definition 3.3. Exponential Functions
⊢def ∀x. exp x = Re (cexp (Cx x))

The HOL Light functions exp and cexp with data-types R → R and C → C represent
the real and complex exponential functions, respectively.

Definition 3.4. Complex Derivative
⊢def ∀f x. complex_derivative f x =

(@f’. (f has_complex_derivative f’) (at x))

The function complex_derivative describes the complex derivative in functional
form. It accepts a function f: C → C and a complex number x, which is the point
at which f has to be differentiated, and returns a variable of data-type C, providing
the derivative of f at x. Here, the term at indicates a specific point at which the
differentiation is being evaluated, namely, at the value of x.
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Definition 3.5. Higher Complex Derivative
⊢def ∀f x.
higher_complex_derivative 0 f x = f x ∧
(∀n. higher_complex_derivative (SUC n) f x

= (complex_derivative (λx. higher_complex_derivative n f x) x))

The function higher_complex_derivative represents the nth-order derivative of
the function f. It accepts an order n of the derivative, a function f: C → C and a
complex number x, and provides the nth derivative of f at x.

To facilitate in the comprehension of the paper to a non-HOL user, we artic-
ulate the telegrapher’s equations and the associated lemmas through a blend of
Math/HOL Light notation, and some of the frequently used functions in our formal-
ization, their meaning and the associated mathematical conventions are presented
in Table 2.

HOL Light Functions Mathematical Conventions Description
cexp x −→e x Complex exponential function
ctan −→tan Tangent of a complex-valued function
complex_derivative

(λz. V(z)) z
−−−→
dV(z)

dz
Derivative of a complex-valued
function V w.r.t z

higher_complex_derivative 2
(λz. V(z)) z

−−−−→
d2V(z)

dz2
Second-order derivative of a
complex-valued function V w.r.t z

complex_derivative
(λz. V z t) z

−−−−−→
∂V(z,t)

∂z
Partial derivative of a
complex-valued function V w.r.t z

higher_complex_derivative 2
(λz. V z t) z

−−−−−−→
∂2V(z,t)

∂z2
Second-order partial derivative of a
complex-valued function V w.r.t z

Table 2: Conventions used for HOL Light Functions

4 Formalization of the Telegrapher’s Equations
The telegrapher’s equations are a pair of coupled linear PDEs that describe how the
voltage and current change along a transmission line with respect to distance and
time. Figure 2 depicts an equivalent circuit model of a two-conductor transmission
line. Here, R represents the line parameter resistance, whereas the other line pa-
rameters are the inductance L, the capacitance C, and the conductance G, which
are specified per unit length (∆z). Moreover, V (z, t) and V (z + ∆z, t) are the input
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and output voltages, respectively. Similarly, I(z, t) and I(z + ∆z, t) are the input
and output currents, respectively. Moreover, both voltage and current are functions
of space and time.

Z Z + Z

V (z, t)

+

-

+

-

I

ZG

L ZR ZI (z, t) I(z + Z, t)

V(z +
C Z

Z, t)
To load

To generator

Z

Figure 2: Equivalent Circuit of Two-Conductor Transmission Line [15]

4.1 Telegrapher’s Equations in Time Domain

The Law of Conservation of Energy, attributed to Kirchhoff, asserts that there
is no loss of voltage throughout a closed loop or circuit; instead, one returns to
the initial point within the circuit and, consequently, to the same initial electric
potential. Hence, any reductions in voltage within the circuit must balance out with
the voltage sources encountered along the same route. By applying the Kirchhoff’s
voltage law to the circuit of two-conductor transmission line of Figure 2, we get the
following equations [16]:

V (z + ∆z, t) − V (z, t) = −R∆zI(z, t) − L∆z
∂I(z, t)

∂t
(3)

Next, dividing Equation (3) by ∆z and applying the limit ∆z → 0, we obtain:

lim
∆z→0

V (z + ∆z, t) − V (z, t)
∆z

= −R∆zI(z, t)
∆z

− L
∆z

∆z

∂I(z, t)
∂t

Finally, by using the definition of the partial derivative, we get:

∂V (z, t)
∂z

= −RI(z, t) − L
∂I(z, t)

∂t
(4)
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Similarly, by applying the Kirchhoff’s current law to the circuit, we find [16]:

I(z + ∆z, t) − I(z, t) = −G∆zV (z + ∆z, t) − C∆z
∂V (z + ∆z, t)

∂t
(5)

Next, dividing Equation (5) by ∆z and using the definition of the partial derivative,
we get:

∂I(z, t)
∂z

= −GV (z, t) − C
∂V (z, t)

∂t
(6)

Equations (4) and (6) are known as the telegrapher’s equations that provide a time-
domain relationship between the voltage and current in any transmission line.

The above telegrapher’s equations for voltage and current (Equations (4) and (6))
can be formalized in HOL Light in the time domain as follows:
Definition 4.1. Telegrapher’s Equation for Voltage
⊢def ∀V I L z t.

telegraph_equation_voltage V I R L z t ⇔
(complex_derivative (λz. V z t) z) =

––(Cx L * complex_derivative (λt. I z t) t - Cx R * (I z t))

Definition 4.2. Telegrapher’s Equation for Current
⊢def ∀V I C z t.

telegraph_equation_current V I G C z t ⇔
(complex_derivative (λz. I z t) z) =

––(Cx C * complex_derivative (λt. V z t) t) - Cx G * (V z t)

where telegraph_equation_voltage and telegraph_equation_current mainly
accept the functions V and I of type C × C → C, representing the voltage and
current, respectively, and return the corresponding telegrapher’s equations. The
variables R:R, L:R, G:R C:R, z:C, and t:C represent the resistance, inductance,
conductance, capacitance, the spatial coordinate and the time variable, respectively.

It is important to note that we use complex_derivative to formalize the time-
domain PDEs due to the involvement of the phasor-domain representations of the
voltage and current functions in the analysis. Since a phasor-domain representa-
tion of a function is a vector in complex plane with some magnitude and angle,
the variables z and t are considered as complex numbers for convenience and the
corresponding voltages and currents equations equally hold under this choice.

Now, we can combine the telegrapher’s equations (Equations (4) and (6)) to ob-
tain their alternate representations that are commonly known as the wave equations,
which are more practical to use and provide some additional physical insights and
are mathematically expressed as follows:
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∂2V (z, t)
∂z2 − LC

∂2V (z, t)
∂t2 = (RC + GL)∂V (z, t)

∂t
+ RGV (z, t) (7)

∂2I

∂z2 − LC
∂2I

∂t2 = (RC + GL)∂I(z, t)
∂t

+ RGI(z, t) (8)

where ∂2

∂z2 and ∂2

∂t2 capture the second-order partial derivative with respect to z

and t, respectively.
To model the wave equations for voltage and current, we need the transmission

line constants, such as R, L, G and C. Therefore, we use the type abbreviation in
HOL Light providing a compact representation of these constants as follows:

Definition 4.3. Transmission Line Constants
new_type_abbrev ("R",‘:R’)
new_type_abbrev ("L",‘:R’)
new_type_abbrev ("G",‘:R’)
new_type_abbrev ("C",‘:R’)
new_type_abbrev ("trans_line_const",‘:R # L # G # C’)

Now, we formalize the wave equations for both voltage (Equation (7)) and current
(Equation (8)) in the time domain as follows:

Definition 4.4. Wave Equation for Voltage
⊢def ∀V R L G C z t.
wave_voltage_equation V ((R,L,G,C):trans_line_const) z t ⇔

higher_complex_derivative 2 (λz. V z t) z -
Cx L * Cx C * (higher_complex_derivative 2 (λt. V z t) t =

(Cx R * Cx C + Cx G * Cx L) * (complex_derivative (λt. V z t) t) +
Cx R * Cx G * (V z t))

Definition 4.5. Wave Equation for Current
⊢def ∀I R L G C z t.

wave_current_equation I ((R,L,G,C):trans_line_const) z t ⇔
higher_complex_derivative 2 (λz. I z t) z -

Cx L * Cx C (higher_complex_derivative 2 (λt. I z t) t =
(Cx R * Cx C + Cx G * Cx L) * (complex_derivative (λt. I z t) t) +

Cx R * Cx G * (I z t))

Next, we express the space-time voltage and current functions as phasors in order
to reduce the PDEs to Ordinary Differential Equations (ODEs), which will greatly
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facilitate the derivation of the general solutions of these equations.

The relationship between the space-time voltage and current functions and their
phasors can be mathematically expressed as follows [17]:

V (z, t) = Re{V (z)ejωt}

I(z, t) = Re{I(z)ejωt}
where V (z) and I(z) are the phasor components corresponding to V (z, t) and I(z, t),
respectively.

4.2 Telegrapher’s Equations in Phasor Domain
The principal advantage of the phasor representation of the telegrapher’s equations
over the time-domain versions is that we no longer need the derivatives with respect
to time and are left with the derivatives with respect to distance only. This consid-
erably simplifies the corresponding equations. For instance, the sinusoidally time-
varying case, the telegrapher’s equations (Equations (4) and (6)) can be rewritten in
terms of phasor quantities by replacing ∂

∂t
with jω. We can derive the telegrapher

equation for voltage from Equation (4) as follows:

∂V (z, t)
∂z

= −RI(z, t) − L
∂I(z, t)

∂t

∂

∂z
[Re{V (z)ejωt}︸ ︷︷ ︸

V (z, t)

] = −R[Re{I(z)ejωt}︸ ︷︷ ︸
I(z, t)

] − L
∂

∂t
[Re{I(z)ejωt}︸ ︷︷ ︸

I(z, t)

]

Re
{
ejωt dV (z)

dz

}
= Re{−RI(z)ejwt − L(jω)ejωtI(z)}

dV (z)
dz

= (−R − jωL)I(z)

From the above, we can rewrite the telegrapher’s equations for voltage as:

dV (z)
dz

+ (R + jωL)I(z) = 0 (9)

We can also derive the following Equation (10) from Equation (6) in a similar manner

dI(z)
dz

+ (G + jωC)V (z) = 0 (10)
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Here, Equations (9) and (10) are ODEs due to the fact that V and I are functions
of the single variable z. Equation (9) indicates that the rate of change of the phasor
voltage along the transmission line, as a function of position z, is equal to the series
impedance of the line per unit length multiplied by the phasor current. Similarly,
Equation (10) states that the rate of change of phasor current along the transmission
line, as a function of position z, is equal to the shunt admittance of the line per unit
length multiplied by the phasor voltage. We formalize the telegrapher’s equation in
the phasor domain for voltage (Equation (9)) as:

Definition 4.6. Telegrapher’s Equation
⊢def ∀V I R L w z. telegraph_equation_phasor_voltage V I R L w z ⇔

telegraph_voltage V I R L w z = Cx(&0)

where telegraph_equation_phasor_voltage accepts the complex functions V:C
→ C and I:C → C, the line parameters R:R and L:R, the angular frequency ω:R,
the spatial coordinate z:C, and returns the corresponding telegrapher’s equation.
Here, the function telegraph_voltage models the left-hand side of Equation (9),
and is formalized as follows:

Definition 4.7. Left-Hand Side of Equation (9)
⊢def ∀V I R L w z.

telegraph_voltage V I R L w z =
complex_derivative (λz. V(z)) z + (Cx R + ii * Cx w * Cx L) * I(z)

Similarly, we formalize Equation (10) in HOL Light as follows:

Definition 4.8. Telegrapher’s Equation
⊢def ∀V I G C w z. telegraph_equation_phasor_current V I G C w z ⇔

telegraph_current V I G C w z = Cx(&0)

with

Definition 4.9. Left-Hand Side of Equation (10)
⊢def ∀V I G C w z. telegraph_current V I G C w z =

complex_derivative (λz. I(z)) z + (Cx G + ii * Cx w * Cx C) * V(z)

where telegraph_current models the left-hand side of Equation (10).

4.3 Relationship between Telegrapher’s and Wave Equations in
Phasor Domain

A limitation in using the above form of the telegrapher’s equations (Equations (9)
and (10)) is that we need to solve each of them for both voltage and current.
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To reduce such overhead, we can write the telegrapher’s equations using one function
(V(z) or I(z)) as equivalent wave equations. To do this, we first take the derivative
of Equation (9) with respect to z:

d

dz

{
dV (z)

dz
= −(R + jωL)I(z)

}

which can be written as:

d2V (z)
dz2 = −(R + jωL)dI(z)

dz
(11)

Next, we substitute Equation (10) in Equation (11), to obtain the following equation
that involves only V(z):

d2V (z)
dz2 = γ2V (z) (12)

γ is the complex propagation constant and is mathematically expressed as:

γ = α + jβ =
√

(R + jωL)(G + jωC). (13)

where α is the attenuation coefficient and β is the phase coefficient and both are
mathematically expressed as:

α = Re(γ) = Re{
√

(R + jωL)(G + jωC)}

β = Im(γ) = Im{
√

(R + jωL)(G + jωC)}
In a similar manner, we derive the second wave equation by taking the derivative

of Equation (10) and substituting Equation (9) in the resultant equation:

d2I(z)
dz2 = γ2I(z) (14)

We can alternatively represent the wave equations (Equations (12) and (14)) as:

d2V (z)
dz2 − γ2V (z) = 0 (15)

d2I(z)
dz2 − γ2I(z) = 0 (16)

Now, to verify a relationship between the telegrapher’s and wave equations for volt-
age and current in the phasor domain, we first formalize the propagation constant
in HOL Light as follows:
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Definition 4.10. Propagation Constant
⊢def ∀R L G C w.
propagation_constant ((R,L,G,C):trans_line_const) w =

csqrt ((Cx R + ii * Cx w * Cx L) * (Cx G + ii * Cx w * Cx C))

The function propagation_constant accepts the transmission line parameters R, L,
G, C and angular frequency ω, and returns the corresponding function.
The wave equations (Equations (15) and (16)) in higher-order-logic are formalized
as:

Definition 4.11. Wave Equation for Voltage
⊢def ∀V tlc w z.

wave_equation_phasor_voltage V z tlc w ⇔
wave_voltage V z tlc w = Cx(&0)

with

Definition 4.12. Left-Hand Side of Equation (15)
⊢def ∀V tlc w z.

wave_voltage V z tlc w =
higher_complex_derivative 2 (λz. V(z)) z -

(propagation_constant tlc w) pow 2 * V(z)

Definition 4.13. Wave Equation for Current
⊢def ∀I tlc w z.

wave_equation_phasor_current I z tlc w z ⇔
wave_current I z tlc w = Cx(&0)

with

Definition 4.14. Left-Hand Side of Equation (16)
⊢def ∀I tlc w z.

wave_current I z tlc w =
higher_complex_derivative 2 (λz. I(z)) z -

(propagation_constant tlc w) pow 2 * I(z)

Now, we formally verify the relationship between the telegrapher’s and wave equa-
tions for voltage in the phasor domain as the following HOL Light theorem:
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Theorem 4.1. Relationship between Telegrapher’s and Wave Equations for Voltage
⊢thm ∀V I R L G C w z.
let tlc = ((R,L,G,C):trans_line_const) in
[A1] (λz. complex_derivative (λz. V z) z) complex_differentiable at z ∧
[A2] I complex_differentiable at z ∧
[A3] telegraph_current V I G C w z = Cx(&0)

⇒ complex_derivative (λz. telegraph_voltage V I R L w z) z =
wave_voltage V z tlc w

Assumption A1 ensures that the first-order derivative of function V is differentiable
at z. Assumption A2 asserts the differentiability of the function I at z. Assumption
A3 provides the telegrapher’s equation for current, i.e., Equation (10). The proof
of Theorem 4.1 is mainly based on the definitions of the telegrapher’s and wave
equations and some classical properties of the complex derivative along with some
complex arithmetic reasoning. Similarly, we formally verify this relationship for
current in the phasor domain.
Theorem 4.2. Relationship between Telegrapher’s and Wave Equations for Current

⊢thm ∀V I R L G C w z.
let tlc = ((R,L,G,C):trans_line_const) in
[A1] (λz. complex_derivative (λz. I z) z) complex_differentiable at z ∧
[A2] V complex_differentiable at z ∧
[A3] telegraph_voltage V I R L w z = Cx(&0)

⇒ complex_derivative (λz. telegraph_current V I G C w z) z =
wave_current I z tlc w

The verification of Theorem 4.2 is very similar to that of Theorem 4.1. More details
about their verification can be found at [10].

5 Formal Verification of Analytical Solutions of the
Telegrapher’s Equations

Analyzing transmission lines is mainly based on finding out solutions of these PDE
based telegrapher’s and wave equations that are further used to analyze various
aspects of signal propagation, such as attenuation, distortion, reflection, and disper-
sion along the transmission line. One of the examples is to understand the behavior
of high-frequency signals, where the distributed parameters of the transmission line
significantly affect the signal integrity. In this section, we formally verify the correct-
ness of the analytical solutions of the telegrapher’s equations in the phasor domain
pertaining to sinusoidal steady state and in the time domain that are concerned
with arbitrary variations over time.
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5.1 Verification of the Solutions in Phasor Domain
We can mathematically express the general solutions of the wave equations (and
thus the telegrapher’s equations) (Equations (15) and (16)) as folllows:

V (z) = V +(z) + V −(z) = V +
0 e−γz + V −

0 eγz (17)

I(z) = I+(z) + I−(z) = I+
0 e−γz + I−

0 eγz (18)

Here, V +
0 , V −

0 , I+
0 , I−

0 are the complex constants that can be determined by bound-
ary conditions. Similarly, the transmission line voltage V +(z) and current I+(z)
represent the forward-going waves (propagating in the +z direction) and voltage
V −(z) and current I−(z) are the backward-going waves (propagating in the −z
direction).
If we insert the solution for V (z) in Equation (9), we get:

dV (z)
dz

= −γV +
0 e−γz + γV −

0 eγz = −(R + jωL)I(z) (19)

Next, we rearrange the above equation to obtain the current I(z):

I(z) = γ

R + jωL
(V +

0 e−γz − V −
0 eγz) (20)

Note that both expressions (Equations (18) and (20)) for the current are the
same. The characteristic impedance, which is the ratio of the line voltage and cur-
rent, is an important characteristic of transmission line and can be mathematically
expressed as follows:

Z0 = V +
0

I+
0

= −V −
0

I−
0

=
√

R + jωL

G + jωC
= R + JωL

γ
= R0 + jX0 (21)

where R0 and X0 are the real and imaginary parts of Z0. The characteristic
impedance Z0 and the propagation constant γ are two important properties of the
transmission line due to their direct dependence on the line parameters R, L, G, C
and the phasor of the operation.

Next, we define the characteristic impedance in HOL Light as follows:

Definition 5.1. Characteristic Impedance
⊢def ∀R L G C w.

characteristic_impedance (R,L,G,C) w =
(let tlc = ((R,L,G,C):trans_line_const) in

(Cx R + ii * Cx w * Cx L) / propagation_constant tlc w)
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The next step is to formalize the general solutions (Equations (17) and (20)) in
HOL Light:

Definition 5.2. Wave Solution for Voltage
⊢def ∀V1 V2 tlc w z.

wave_solution_voltage_phasor V1 V2 tlc w z =
V1 * cexp(––(propagation_constant tlc w) * z) +

V2 * cexp((propagation_constant tlc w) * z)

where V1 and V2 in the formalization refer to the complex constants V +
0 and V −

0 in
Equation (17), respectively. The parameters w and z represent the angular frequency
and the spatial coordinate, respectively.

Definition 5.3. Wave Solution for Current
⊢def ∀V1 V2 tlc w z.

wave_solution_current_phasor V1 V2 tlc w z =
Cx(&1) / characteristic_impedance tlc w *

(V1 * cexp(––(propagation_constant tlc w) * z) -
V2 * cexp((propagation_constant tlc w) * z))

Next, we formally verify the general solutions (Equations (17) and (20)) of the wave
equations for voltage and current, (represented by Equations (15) and (16)), in the
HOL Light theorem prover as follows:

Theorem 5.1. Correctness of the Solution for Voltage
⊢thm ∀V1 V2 V R L G C w z.

let tlc = ((R,L,G,C):trans_line_const) in
wave_equation_voltage_phasor

(λz. wave_solution_voltage_phasor V1 V2 tlc w z) V tlc w

Theorem 5.2. Correctness of the Solution for Current
⊢thm ∀V1 V2 I R L G C w z.

let tlc = ((R,L,G,C):trans_line_const) in
wave_equation_current_phasor

(λz. wave_solution_current_phasor V1 V2 tlc w z) I tlc w

The verification of Theorems 5.1 and 5.2 is mainly based on four lemmas about the
complex differentiation of the solutions, given in Table 3.
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Mathematical Form Formalized Form

dV (z)
dz

= −γV 1e−γz + γV 2eγz

Lemma 1 (First-Order Derivative of General Solution for Voltage):
∀V1 V2 R L G C w z.

let tlc = ((R,L,G,C):trans_line_const) in
complex_derivative (λz.

wave_solution_voltage_phasor V1 V2 tlc w z) z =
V1 * (––(propagation_constant tlc w)) *

cexp (––(propagation_constant tlc w) * z) +
V2 * (propagation_constant tlc w) *

cexp ((propagation_constant tlc w) * z)

d2V (z)
dz2 = γ2V 1e−γz + γ2V 2eγz

Lemma 2 (Second-Order Derivative of General Solution for Voltage):
∀V1 V2 R L G C w z.

let tlc = ((R,L,G,C):trans_line_const) in
higher_complex_derivative 2 (λz.

wave_solution_voltage_phasor V1 V2 tlc w z) z =
V1 * (propagation_constant tlc w) pow 2 *

cexp (––(propagation_constant tlc w) * z) +

V2 * (propagation_constant tlc w) pow 2 *
cexp ((propagation_constant tlc w) * z

dI(z)
dz

= 1
Z0

(−γV 1e−γz − γV 2eγz)

Lemma 3 (First-Order Derivative of General Solution for Current):
∀V1 V2 R L G C w z.

let tlc = ((R,L,G,C):trans_line_const) in
complex_derivative (λz.

wave_solution_current_phasor V1 V2 tlc w z) z =
Cx (&1) / characteristic_impedance tlc w *

(V1 * (––propagation_constant tlc w) *
cexp (––(propagation_constant tlc w) * z) -

V2 * (propagation_constant tlc w) *
cexp ((propagation_constant tlc w) * z))

d2I(z)
dz2 = 1

Z0
(γ2V 1e−γz − γ2V 2eγz)

Lemma 4 (Second-Order Derivative of General Solution for Current):
∀V1 V2 R L G C w z.

let tlc = ((R,L,G,C):trans_line_const) in
higher_complex_derivative 2 (λz.

wave_solution_current_phasor V1 V2 tlc w z) z =
Cx (&1) / characteristic_impedance tlc w *

(V1 * (propagation_constant tlc w) pow 2 *
cexp (––(propagation_constant tlc w) * z) -

V2 * (propagation_constant tlc w) pow 2 *
cexp ((propagation_constant tlc w) * z))

Table 3: Lemmas of the Derivatives of General Solutions in Phasor Domain

Since, there exists a relationship between the telegrapher’s and wave equations,
as proven in Section 4, the solutions of the wave equations also satisfy the telegra-
pher’s equations.
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Theorem 5.3. General Solution of the Telegrapher’s Equation for Voltage
⊢thm ∀V1 V2 V I R L G C w.
let tlc = ((R,L,G,C):trans_line_const) in
[A1] Cx R + ii * Cx w * Cx L ̸= Cx(&0) ∧
[A2] (∀z. V z = wave_solution_voltage_phasor V1 V2 tlc w z) ∧
[A3] (∀z. I z = wave_solution_current_phasor V1 V2 tlc w z)

⇒ telegraph_equation_phasor_voltage V I R L w z

Assumption A1 ensures that expression R + jωL is not equal to zero. Assumptions
A2 and A3 provide solutions of the wave equations for the voltage and the current,
respectively. The verification of the above theorem is based on the properties of the
complex differentiation along with some complex arithmetic reasoning.

Theorem 5.4. General Solution of the Telegrapher’s Equation for Current
⊢thm ∀V1 V2 V I R L G C w.
let tlc = ((R,L,G,C):trans_line_const) in
[A1] Cx R + ii * Cx w * Cx L ̸= Cx(&0) ∧
[A2] (∀z. V z = wave_solution_voltage_phasor V1 V2 tlc w z) ∧
[A3] (∀z. I z = wave_solution_current_phasor V1 V2 tlc w z)

⇒ telegraph_equation_phasor_current V I G C w z

5.2 Verification of Properties of Transmission Line
A transmission line is characterized by two essential properties, namely its propa-
gation constant γ and characteristic impedance Z0. These properties are specified
by the angular frequency ω and the line parameters R, L, G and C. Understanding
and optimizing the transmission line characteristics help engineers and designers to
achieve efficient signal transmission, maintain signal integrity, and ensure the reliable
operation of these systems. In this section, we formally verify these transmission
line properties for the case of lossless and distortionless lines.

5.2.1 Lossless Line

The main purpose of a transmission line is to facilitate the transmission of informa-
tion between distant locations with minimal signal degradation that can be achieved
by reducing the signal loss. This is one of the crucial requirements in the construction
of an efficient and a reliable transmission line. In the case of a lossless transmission
line, the elements R (resistance) and G (conductance) can be considered as negligible
or effectively zero:
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R = G = 0

The characteristic impedance of a lossless transmission line can now be expressed in
a simplified form by using the above values of R and G in Equation (21) as:

Z0 =
√

jωL

jωC
=

√
L

C

Similarly, the attenuation and phase constants expressed in Equation (13) becomes:

α = 0 (22)

β =
√

LC (23)

This implies that the transmission line has no signal attenuation, and as a result,
the propagation constant can be represented by a purely imaginary number:

γ = jβ = jω
√

LC

5.2.2 Distortionless Line

A distortionless line refers to a transmission medium characterized by an attenuation
constant α that exhibits no variation with changes in frequency while the phase
constant β is linearly dependent on frequency.
For a distortionless transmission line, the elements R and G are related as:

R

L
= G

C

Now, the characteristic impedance of the transmission line is expressed as:

Z0 =
√

R(1 + jωL/R)
R(1 + jωC/G) =

√
R

G
=

√
L

C

The propagation constant (Equation (13)) becomes:

γ =
√

RG

(
1 + jωL

R

) (
1 + jωC

G

)

γ =
√

RG

(
1 + jωC

G

)
= α + jβ

or
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α =
√

RG, β = ω
√

LC (24)

We can see that the attenuation constant α is independent of the frequency, whereas
β is a linear function of frequency.

The verified properties, i.e., propagation constant and characteristic impedance
of the lossless and distortionless transmission lines are given in Table 4.

Case Propagation Constant Characteristic Impedance

Lossless

Theorem 1 (Attenuation Constant)

⊢thm ∀R L G C w.
let tlc = ((R,L,G,C):trans_line_const) in
[A1] w > &0 [A2] L > &0 ∧ [A3] C > &0 ∧
[A4] R = &0 ∧ [A5] G = &0
⇒ Re(propagation_constant tlc w) = &0

Theorem 2 (Phase Constant)

⊢thm∀R L G C w.
let tlc = ((R,L,G,C):trans_line_const) in
[A1] w > &0 [A2] L > &0 ∧ [A3] C > &0 ∧
[A4] R = &0 ∧ [A5] G = 0
⇒ Im(propagation_constant tlc w) = w

√
LC

Theorem 3 (Characteristic Impedance)

⊢thm∀R L G C w.
let tlc = ((R,L,G,C):trans_line_const) in
[A1] w > &0 [A2] L > &0 ∧ [A3] C > &0 ∧
[A4] R = &0 ∧ [A5] G = &0
[A6] ii * Cx w ̸= Cx (&0)
[A7] csqrt (Cx L * Cx C) ̸= Cx (&0)
⇒ characteristic_impedance tlc w =

csqrt(Cx(L) * Cx(C)) / Cx(C)

Distortionless

Theorem 4 (Attenuation Constant)

⊢thm∀R L G C w.
let tlc = ((R,L,G,C):trans_line_const) in
[A1] L > &0 ∧ [A2] R > &0 ∧
[A3] G > &0 ∧
[A4] R / L = G / C
⇒ Re(propagation_constant tlc w) =

√
RG

Theorem 5 (Phase Constant)

⊢thm∀R L G C w.
let tlc = ((R,L,G,C):trans_line_const) in
[A1] L > &0 ∧ [A2] R > &0 ∧
[A3] G > &0 ∧ [A4] C > &0 ∧
[A5] R / L = G / C
⇒ Im(propagation_constant tlc w) = w

√
LC

Theorem 6 (Characteristic Impedance)

⊢thm∀R L G C w.
let tlc = ((R,L,G,C):trans_line_const) in
[A1] L > &0 ∧ [A2] C > &0 ∧
[A3] &0 < R ∧ [A4] G > &0 ∧
[A5] Cx G + ii * Cx w * Cx C ̸= Cx (&0) ∧
[A6] R / L = G / C
⇒ characteristic_impedance tlc w =

csqrt(Cx(L) * Cx(C)) / Cx(C)

Table 4: Properties of Transmission Lines

In the following section, we verify the general solutions of the time-domain PDEs
by considering a lossless line, where we assume both resistance R and conductance
G to be zero.
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5.3 Verification of the Solutions in Time Domain

It is useful to examine the complete time functions for understanding the nature of
the voltage and current within a transmission line. We can find the corresponding
time-domain expressions for voltage and current (solution in the time domain) on
the line by multiplying the phasor of the voltage and current with the harmonic
time variation term ejwt and taking its real part as follows:

V (z, t) = Re{V (z)ejωt} (25)

I(z, t) = Re{I(z)ejωt} (26)

Next, we use Equation (17) in the time-domain solution (Equation (25)) and get:

V (z, t) = Re{(V +
0 e−γz + V −

0 eγz)ejωt}

V (z, t) = Re{V +
0 e−γzejωt + V −

0 eγzejωt}

By splitting the propagation constant in real and imaginary parts, i.e., γ = α + jβ,
we can write the above equation for voltage as follows:

V (z, t) = Re{V +
0 e−(α+jβ)zejωt + V −

0 e(α+jβ)zejωt}

We know that α is equal to zero for a lossless transmission line. Thus, we get:

V (z, t) = Re{V +
0 ej(ωt−βz) + V −

0 ej(ωt+βz)} (27)

After applying Euler’s formula to the above equation and taking the real part of the
solution, we have:

V (z, t) = V +
0 cos(ωt − βz) + V −

0 cos(ωt + βz) (28)

where we assume V +
0 and V −

0 to be real.
Using Definition 5.2, we formalize the general solution (Equation (25)) in the time-
domain for voltage as follows:

Definition 5.4. General Solution for Voltage in Time Domain
⊢def ∀V1 V2 tlc w z t.

wave_solution_voltage_time V1 V2 tlc w z t =
Re((wave_solution_voltage_phasor V1 V2 tlc w z) * cexp(ii * Cx w * t))
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where the function wave_solution_voltage_time uses the phasor given by the volt-
age function wave_solution_voltage_phasor to construct the formal definition
of Equation (25).

Next, we formally verify the general solution for voltage in the time domain in
HOL Light as follows:

Theorem 5.5. General Solution of Wave Equation for Voltage
⊢thm ∀V1 V2 R L G C w.
let tlc = ((R,L,G,C):trans_line_const) in
[A1] w > &0 ∧ [A2] L > &0 ∧ [A3] C > &0 ∧
[A4] R = &0 ∧ [A5] G = &0 ∧ [A6] (∀t. Im t = &0) ∧
[A7] (∀z. Im z = &0) ∧ [A8] Im V1 = &0 ∧ [A9] Im V2 = &0 ∧
[A10](∀z t. V z t = Cx(wave_solution_voltage_time V1 V2 tlc w z t))

⇒ wave_voltage_equation V tlc z t

Assumptions A1-A3 ensure that the angular frequency ω, the line parameters L and
C are positive real values. Assumptions A4-A5 assert that the line parameters R
and G are equal to zero, which is an assumption for a lossless transmission line.
Assumptions A6-A7 ensure that the imaginary parts of the variables z and t are
equal to zero in the time domain. Assumptions A8-A9 guarantee that the coefficients
V1 and V2 are real. Assumption A10 provides the solution of the wave equation for
voltage, i.e., Equation (28). The proof of the above theorem is mainly based on the
following Lemma 5.1 which gives the relationship between phasor and time-domain
functions as well as four important lemmas about the complex differentiation of the
time-domain solution with respect to the parameters z and t, which are given in
Table 5.

Lemma 5.1. Relationship between Phasor and Time-Domain Functions for Voltage
⊢lem ∀V1 V2 R C L G w z t.

let tlc = ((R,L,G,C):trans_line_const) in
[A1] w > &0 ∧ [A2] L > &0 ∧ [A3] C > &0 ∧
[A4] R = &0 ∧ [A5] G = &0

⇒ wave_solution_voltage_time V1 V2 tlc w z t =
Re(V1) * (cos(w * Re t - (Im(propagation_constant tlc w)) * Re z)) +

Re(V2) * (cos(w * Re t + Im((propagation_constant tlc w)) * Re z))

Assumptions A1-A5 are the same as those of Theorem 5.5. The verification of Lemma
5.1 is mainly based on Theorem 1 given in Table 4 and the properties of transcen-
dental functions alongside some complex arithmetic reasoning.
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Mathematical Form Formalized Form

∂V (z, t)
∂z

= V 1sin(ωt − βz)β−
V 2sin(ωt + βz)β

Lemma 1
(First-Order Partial Derivative of General Solution

for Voltage with respect to distance):
∀V1 V2 R L G C w.
let tlc = ((R,L,G,C):trans_line_const)
[A1] w > &0 ∧ [A2] L > &0 ∧ [A3] C > &0 ∧
[A4] R = &0 [A5] G = &0 ∧ [A6] (∀t. Im t = &0) ∧
[A7] (∀z. Im z = &0) ∧ [A8] Im V1 = &0 ∧ [A9] Im V2 = &0 ∧
⇒ complex_derivative (λz.

wave_solution_voltage_time V1 V2 tlc w z t) z =
Cx (Re V1 * (––sin (w * Re t - (w * sqrt (L * C)) * Re z)) *

(––(w * sqrt (L * C)))) + Re V2 * (––sin (w * Re t +
(w * sqrt (L * C)) * Re z))* ((w * sqrt (L * C)))

∂2V (z, t)
∂z2 = −V 1cos(ωt − βz)β2−

V 2cos(ωt + βz)β2

Lemma 2
(Second-Order Partial Derivative of General Solution

for Voltage with respect to distance):
∀V1 V2 R L G C w.
let tlc = ((R,L,G,C):trans_line_const)
[A1] w > &0 ∧ [A2] L > &0 ∧ [A3] C > &0 ∧
[A4] R = &0 [A5] G = &0 ∧ [A6] (∀t. Im t = &0) ∧
[A7] (∀z. Im z = &0) ∧ [A8] Im V1 = &0 ∧ [A9] Im V2 = &0 ∧
⇒ higher_complex_derivative 2 (λz.

wave_solution_voltage_time V1 V2 tlc w z t) z =
Cx (Re V1 * (––cos (w * Re t - (w * sqrt (L * C)) * Re z)) *

((w * sqrt (L * C))) pow 2 + Re V2 * (––cos (w * Re t +
(w * sqrt (L * C)) * Re z)) * ((w * sqrt (L * C))) pow 2)

∂V (z, t)
∂t

= −V 1sin(ωt − βz)ω−
V 2sin(ωt + βz)ω

Lemma 3
(First-Order Partial Derivative of General Solution

for Voltage with respect to time):
∀V1 V2 R L G C w.
let tlc = ((R,L,G,C):trans_line_const)
[A1] w > &0 ∧ [A2] L > &0 ∧ [A3] C > &0 ∧
[A4] R = &0 [A5] G = &0 ∧ [A6] (∀t. Im t = &0) ∧
[A7] (∀z. Im z = &0) ∧ [A8] Im V1 = &0 ∧ [A9] Im V2 = &0 ∧
⇒ complex_derivative (λt.

wave_solution_voltage_time V1 V2 tlc w z t) t =
Cx (Re V1 * (––sin (w * Re t - (w * sqrt (L * C)) * Re z)) * w +

Re V2 * (––sin (w * Re t + (w * sqrt (L * C)) * Re z)) * w)

∂2V (z, t)
∂t2

= −V 1cos(ωt − βz)ω2−
V 2cos(ωt + βz)ω2

Lemma 4
(Second-Order Partial Derivative of General Solution

for Voltage with respect to time):
∀V1 V2 R C L G w.
let tlc = ((R,L,G,C):trans_line_const)
[A1] w > &0 ∧ [A2] L > &0 ∧ [A3] C > &0 ∧
[A4] R = &0 [A5] G = &0 ∧ [A6] (∀t. Im t = &0) ∧
[A7] (∀z. Im z = &0) ∧ [A8] Im V1 = &0 ∧ [A9] Im V2 = &0 ∧
⇒ higher_complex_derivative 2 (λt.

wave_solution_voltage_time V1 V2 tlc w z t) t =
Cx (Re V1 * (––cos (w * Re t - (w * sqrt (L * C)) * Re z)) * w pow 2 +

Re V2 * (––cos (w * Re t + (w * sqrt (L * C)) * Re z)) * w pow 2)

Table 5: Lemmas of the Derivatives of General Solutions for Voltage in Time Domain
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Similarly, we use Equation (20) in the time domain solution (Equation (26)) for
current as follows:

I(z, t) = Re{ γ

R + jωL
(V +

0 e−γz − V −
0 eγz)ejωt}

After rearranging the above equation, we have:

I(z, t) = Re{ γ

R + jωL
(V +

0 ej(ωt−βz) − V −
0 ej(ωt+βz))} (29)

Next, by applying Euler’s formula and taking the real part of the solution, we get:

I(z, t) = γ

R + jωL
(V +

0 cos(ωt − βz) − V −
0 cos(ωt + βz)) (30)

Now, using Definition 5.3, we formalize the general solution (Equation (26)) in the
time domain for current as follows:

Definition 5.5. General Solution for Current in Time Domain
⊢def ∀V1 V2 tlc w z t.

wave_solution_current_time V1 V2 tlc w z t =
Re((wave_solution_current_phasor V1 V2 tlc w z) * cexp(ii * Cx w * t))

where wave_solution_current_time accepts the phasor solution of the current
wave_solution _current_phasor that is multiplied with the harmonic time varia-
tion term and returns its real part.

Theorem 5.6. General Solution of Wave Equation for Current
⊢thm ∀V1 V2 R L G C w.
let tlc = ((R,L,G,C):trans_line_const) in
[A1] w > &0 ∧ [A2] L > &0 ∧ [A3] C > &0 ∧
[A4] R = &0 ∧ [A5] G = &0 ∧ [A6] (∀t. Im t = &0) ∧
[A7] (∀z. Im z = &0) ∧ [A8] Im V1 = &0 ∧ [A9] Im V2 = &0 ∧
[A10] Im(Cx(&1)/characteristic_impedance tlc w) = &0 ∧
[A11] (∀z t. I z t = Cx(wave_solution_current_time V1 V2 tlc w z t))

⇒ wave_current_equation I tlc z t

Assumptions A1-A9 are the same as those of Theorem 5.5. Assumption A10 ensures
that the imaginary part of the inverse characteristic impedance is equal to zero. As-
sumption A11 provides the solution of the wave equation for current, i.e., Equation
(30). Similarly, the proof of Theorem 5.6 is primarily based on the formally veri-
fied lemmas about the relationship between phasor and time-domain functions, i.e.,
Lemma 5.2 and derivatives of the general solution for current as given in Table 6.
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Mathematical Form Formalized Form

∂I(z, t)
∂z

= 1
Z0

(V 1sin(ωt − βz)β+
V 2sin(ωt + βz)β)

Lemma 1
(First-Order Partial Derivative of General Solution

for Current with respect to distance):
∀V1 V2 R L G C w.
let tlc = ((R,L,G,C):trans_line_const) in
[A1] w > &0 ∧ [A2] L > &0 ∧ [A3] C > &0 ∧
[A4] R = &0 ∧ [A5] G = &0 ∧ [A6] (∀t. Im t = &0) ∧
[A7] (∀z. Im z = &0) ∧ [A8] Im V1 = &0 ∧ [A9] Im V2 = &0
⇒ complex_derivative (λz.

wave_solution_current_time V1 V2 tlc w z t) z =
Cx (Re ((Cx (&1) / characteristic_impedance tlc w)) *
(Re V1 * ––sin (w * Re t - (w * sqrt (L * C)) * Re z) *

––(w * sqrt (L * C)) + Re V2 * sin (w * Re t +
(w * sqrt (L * C)) * Re z) * (w * sqrt (L * C))))

∂2I(z, t)
∂z2 = 1

Z0
(−V 1cos(ωt − βz)β2+

V 2cos(ωt + βz)β2)

Lemma 2
(Second-Order Partial Derivative of General Solution

for Current with respect to distance):
∀V1 V2 R L G C w.
let tlc = ((R,L,G,C):trans_line_const) in
[A1] w > &0 ∧ [A2] L > &0 ∧ [A3] C > &0 ∧
[A4] R = &0 [A5] G = &0 ∧ [A6] (∀t. Im t = &0) ∧
[A7] (∀z. Im z = &0) ∧ [A8] Im V1 = &0 ∧ [A9] Im V2 = &0 ∧
⇒ higher_complex_derivative 2 (λz.

wave_solution_current_time V1 V2 tlc w z t) z =
Cx (Re (Cx (&1) / characteristic_impedance tlc w) *
(Re V1 * ––cos (w * Re t - (w * sqrt (L * C)) * Re z) *

(w * sqrt (L * C)) pow 2 + Re V2 * cos (w * Re t +
(w * sqrt (L * C)) * Re z) * (w * sqrt (L * C)) pow 2))

∂I(z, t)
∂t

= 1
Z0

(−V 1sin(ωt − βz)ω+
V 2sin(ωt + βz)ω)

Lemma 3
(First-Order Partial Derivative of General Solution

for Current with respect to time):
∀V1 V2 R L G C w.
let tlc = ((R,L,G,C):trans_line_const) in
[A1] w > &0 ∧ [A2] L > &0 ∧ [A3] C > &0 ∧
[A4] R = &0 [A5] G = &0 ∧ [A6] (∀t. Im t = &0) ∧
[A7] (∀z. Im z = &0) ∧ [A8] Im V1 = &0 ∧ [A9] Im V2 = &0 ∧
⇒ complex_derivative (λt.

wave_solution_current_time V1 V2 tlc w z t) t =
Cx (Re (Cx (&1) / characteristic_impedance tlc w) *

Cx (Re V1 * (––sin (w * Re t - (w * sqrt (L * C)) *
Re z)) * w + Re V2 * (sin (w * Re t +

(w * sqrt (L * C)) * Re z)) * w)

∂2I(z, t)
∂t2

= 1
Z0

(−V 1cos(ωt − βz)ω2+
V 2cos(ωt + βz)ω2)

Lemma 4
(Second-Order Partial Derivative of General Solution

for Current with respect to time):
∀V1 V2 R L G C w.
let tlc = ((R,L,G,C):trans_line_const) in
[A1] w > &0 ∧ [A2] L > &0 ∧ [A3] C > &0 ∧
[A4] R = &0 [A5] G = &0 ∧ [A6] (∀t. Im t = &0) ∧
[A7] (∀z. Im z = &0) ∧ [A8] Im V1 = &0 ∧ [A9] Im V2 = &0 ∧
⇒ higher_complex_derivative 2 (λt.
wave_solution_current_time V1 V2 tlc w z t) t =
Cx (Re (Cx (&1) / characteristic_impedance tlc w) * (Re V1 *

––cos (w * Re t - (w * sqrt (L * C)) * Re z) *
(w * sqrt (L * C)) pow 2 + Re V2 * cos (w * Re t +

(w * sqrt (L * C)) * Re z) * (w * sqrt (L * C)) pow 2))

Table 6: Lemmas of the Derivatives of General Solutions for Current in Time Domain
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Lemma 5.2. Relationship between Phasor and Time-Domain Functions for Current
⊢lem ∀V1 V2 R L G C w z t.

let tlc = ((R,L,G,C):trans_line_const) in
[A1] w > &0 ∧ [A2] L > &0 ∧ [A3] C > &0 ∧
[A4] R = &0 ∧ [A5] G = &0

⇒ wave_solution_current_time V1 V2 tlc w z t =
Re(Cx(&1) / characteristic_impedance tlc w) *

(Re V1 * cos(w * Re t - Im(propagation_constant tlc w) * Re z) -
Re V2 * cos(w * Re t + Im(propagation_constant tlc w) * Re z))

Assumptions A1-A5 are the same as those of Lemma 5.1. The verification of the
above lemma is similar to that of Lemma 5.1.

Since the wave and telegrapher’s equations are related to each other, the general
solutions of the wave equations satisfy the telegrapher’s equations in the time domain
and are verified as the following HOL Light theorems:

Theorem 5.7. General Solution of Telegrapher’s Equation for Voltage
⊢thm ∀V1 V2 R L G C w.
let tlc = ((R,L,G,C):trans_line_const) in
[A1] w > &0 ∧ [A2] L > &0 ∧ [A3] C > &0 ∧
[A4] R = &0 ∧ [A5] G = &0 ∧ [A7] (∀t. Im t = &0) ∧
[A8] (∀z. Im z = &0) ∧ [A9] Im V1 = &0 ∧ [A10] Im V2 = &0 ∧
[A11] (∀z t. V z t = Cx (wave_solution_voltage_time V1 V2 tlc w z t))

⇒ telegraph_equation_voltage V I R L z t

Theorem 5.8. General Solution of Telegrapher’s Equation for Current
⊢thm ∀V1 V2 R L G C w.
let tlc = ((R,L,G,C):trans_line_const) in
[A1] w > &0 ∧ [A2] L > &0 ∧ [A3] C > &0 ∧
[A4] R = &0 ∧ [A5] G = &0 ∧ [A6] (∀t. Im t = &0) ∧
[A7] (∀z. Im z = &0) ∧ [A8] Im V1 = &0 ∧ [A9] Im V2 = &0 ∧
[A10] Im (Cx(&1)/characteristic_impedance tlc w) = &0 ∧
[A11] (∀z t. I z t = Cx (wave_solution_current_time V1 V2 tlc w z t))

⇒ telegraph_equation_current V I G C z t

Assumptions of the above theorems are the same as those of Theorems 5.5 and
5.6. Similar to the verification of the wave equations in the time domain, we used
Lemmas 5.1 and 5.2 as well as the verified lemmas of the derivatives for voltage and
current in order to verify the correctness of the wave solutions for the telegrapher’s
equations. More details about the verification of the time-domain PDEs can be
found in our proof script [10].
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6 Application: Terminated Transmission Line

To illustrate the practical effectiveness of our proposed approach, we formally ana-
lyze the behavior of various transmission lines connected between a generator and a
load. Particularly, we perform a formal analysis of a terminated transmission line by
formally verifying the load impedance and the voltage reflection coefficient. More-
over, we formally analyze short-circuited and open-circuited transmission lines that
are commonly used in the construction of resonant circuits and matching stubs.
These lines correspond to the special cases of the load impedance: ZL = 0 for a
short-circuited line and ZL = ∞ for an open-circuited line.

Terminated transmission lines in arbitrary complex load impedances are used
in the majority of sinusoidal steady-state applications. They play a vital role in
ensuring a smooth transfer of signals or power, especially in applications where signal
quality and system performance are critical. We consider the essential behavior of
line voltage, current, and impedance for a portion of a lossless transmission line
terminated with a load ZL, as shown in Figure 3. In this section, we formally
analyze a terminated transmission line by formally verifying in HOL Light various
important properties, such as load impedance and voltage reflection coefficient.

Source

𝑧

𝑧 = 0

𝐼(𝑧)
𝐼𝐿

𝑉𝐿

+

-

+

-

Z(𝑧)

𝑉+𝑒−𝑗𝛽𝑧

𝑉−𝑒+𝑗𝛽𝑧
𝑍0 𝑍𝐿

Figure 3: A Terminated Transmission Line [16]

Consider a line terminated by the load ZL at z = 0 as depicted in Figure 3. The
characteristic impedance is the ratio of the traveling voltage and current waves.

V +
0

I+
0

= Z0

Substituting the boundary condition z = 0, in Equations (17) and (20), we get

V (0) = V +
0 + V −

0 (31) I(0) = V +
0

Z0
− V −

0
Z0

(32)
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We can define the line impedance Z(z) at any position z on the line as seen in
Figure 3:

Z(z) = V (z)
I(z) = Z0

V +
0 e−γz + V −

0 eγz

V +
0 e−γz − V −

0 eγz
(33)

Here, the line impedance is not equal to Z0 when the line is terminated, i.e., a
leftward-traveling reflected wave exists. We can find the line impedance at the load
position, i.e., ZL, by dividing above two equations:

V (z)
I(z) |z=0 = V (0)

I(0) = ZL = Z0
V +

0 + V −
0

V +
0 − V −

0
(34)

Now, we define the line impedance in HOL Light as follows:

Definition 6.1. Line Impedance
⊢def ∀V1 V2 tlc w z.
line_impedance V1 V2 tlc w z =

wave_solution_voltage_phasor V1 V2 tlc w z /
wave_solution_current_phasor V1 V2 tlc w z

where the HOL Light function line_impedance represents the ratio of the total
voltage V (z) to the total current I(z) at any position z along the line.
Next, we formally verify that the voltage and current on the transmission line at
point z = 0 have to abide to the boundary condition imposed by the load.

Theorem 6.1. Line Impedance at the Load Position (z = 0)
⊢thm ∀V1 V2 R L G C w z.

let tlc = ((R,L,G,C):trans_line_const) in
[A1] z = Cx(&0)

⇒ line_impedance V1 V2 tlc w z =
characteristic_impedance tlc w * ((V1 + V2) / (V1 - V2))

The verification of Theorem 6.1 is based on the formalizations of line and charac-
teristic impedances alongside some complex arithmetic reasoning.
We can rearrange Equation (34) as the ratio of the reflected voltage amplitude to
the incident voltage amplitude

V −
0

V +
0

= ZL − Z0
ZL + Z0

(35)

This ratio of the phasors of the reverse and forward waves at the load position
(z = 0) is defined as voltage reflection coefficient.
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ΓL = V −
0 (0)

V +
0 (0)

= V −
0

V +
0

= ZL − Z0
ZL + Z0

(36)

Next, we define the voltage reflection coefficient in HOL Light as follows:

Definition 6.2. Voltage Reflection Coefficient
⊢def ∀V1 V2 tlc w z.
voltage_reflection_coefficient V1 V2 tlc w z =
(line_impedance V1 V2 tlc w z - characteristic_impedance tlc w) /
(line_impedance V1 V2 tlc w z + characteristic_impedance tlc w)

Now, we verify that the voltage reflection coefficient is equal to the ratio of
reflected voltage to the incident voltage as the following HOL Light theorem:
Theorem 6.2. Relating Forward-Going Voltage to Reflected Voltage
⊢thm ∀V1 V2 R L G C w z.

let tlc = ((R,L,G,C):trans_line_const) in
[A1] V1 ̸= V2 ∧ [A2] z = Cx(&0)
[A3] characteristic_impedance tlc w ̸= Cx(&0)

⇒ voltage_reflection_coefficient V1 V2 tlc w z = V2 / V1

Assumption A1 ensures that voltages are different from each other. Assumption
A2 represents the boundary condition z = 0. Assumption A3 guarantees that the
characteristic impedance is nonzero. The verification of the above theorem is mainly
based on Theorem 6.1 along with some complex arithmetic reasoning.

We can also obtain the line impedance at the load (z = 0) from the reflection
coefficient by rewriting the relationship in Equation (36):

ZL = Z0
1 + ΓL

1 − ΓL
(37)

Here, the quantity ΓL is known as the voltage reflection coefficient. Now, we verify
the above relationship as the following HOL Light theorem.
Theorem 6.3. Final Equation for Line Impedance at the Load Position
⊢thm ∀V1 V2 R L G C w z.

let tlc = ((R,L,G,C):trans_line_const) in
[A1] V1 ̸= V2 ∧ [A2] z = Cx(&0) ∧
[A3] characteristic_impedance tlc w ̸= Cx(&0)
⇒ line_impedance V1 V2 tlc w z =

characteristic_impedance tlc w *
((Cx(&1) + (voltage_reflection_coefficient V1 V2 tlc w z)) /

(Cx(&1) - (voltage_reflection_coefficient V1 V2 tlc w z)))
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Assumptions A1-A3 are the same as those of Theorem 6.2. The verification of the
above theorem is primarily based on Theorems 6.1 and 6.2 alongside some complex
arithmetic reasoning.

In the following subsections, we formally analyze short-circuited and open-circuited
transmission lines as special cases of a terminated transmission line.

6.1 Short-Circuited Line
When the load end of a transmission line is connected in such a way that it creates
a short circuit, it is referred to as a short-circuited transmission line. These lines
are extensively used in microwave engineering and Radio-Frequency (RF) systems
to ensure a proper impedance matching, which is essential for an efficient power
transmission and preserving the integrity of signals. Figure 4 depicts a transmission
line of length l that is terminated by a short circuit ensuring a zero load impedance,
i.e., ZL = 0.

𝑍𝑠𝑐

𝑧 = - 𝑙 𝑧 = 0

𝑙

𝑍0

𝐼𝐿

𝑉𝐿 = 0

Figure 4: Short-Circuited Line [16]

Moreover, the short-circuited termination forces the load voltage VL to zero. There-
fore, from Equation (17), we have:

VL = V (z)|z=0 = 0

V +e−jβz + V −ejβz|z=0 = 0

V + + V − = 0

This implies

V − = −V + (38)
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We employ Equation (20) to find the load current flowing through the short circuit
by utilizing Equation (38) as:

IL = I(z)|z=0

= 1
Z0

[V + − V −|z=0

= 2V +

Z0
(39)

Everywhere else on the transmission line, the voltage and current are mathematically
expressed as [16]:

V (z) = V +(e−jβz − ejβz) = −2V +jsin(βz)

I(z) = V +

Z0
(e−jβz + ejβz) = 2V +

Z0
cos(βz)

The line impedance observed when looking towards the far end (short-circuited
location) on the transmission line is:

Z(z) = V (z)
I(z) = Z0

−2V +jsin(βz)
2V +cos(βz) = −jZ0tan(βz)

Next, we formally verify the short-circuited line in HOL Light as follows:

Theorem 6.4. Short-Circuited Line
⊢thm ∀V1 V2 R L G C w z.
let tlc = ((R,L,G,C):trans_line_const) in
[A1] (V2 = ––V1) ∧ [A2] w > &0 ∧ [A3] L > &0 ∧
[A4] C > &0 ∧ [A5] R = &0 ∧ [A6] G = &0 ∧ [A7] V1 ̸= Cx (&0)

⇒ line_impedance V1 V2 tlc w z =
––ii * characteristic_impedance tlc w *

ctan (Cx (Im(propagation_constant tlc w)) * z)

Assumptions A1 provides the condition for the short-circuited line. Assumptions
A2-A4 guarantee that the angular frequency ω and the parameters L and C cannot
be negative or zero, respectively. Assumptions A5-A6 assert that the line parameters
R and G are equal to zero, which is an assumptions for a lossless transmission line.
Assumption A7 provides that the coefficient V1 is different than zero. The verification
of Theorem 6.4 is primarily based on the following lemma:
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Lemma 6.1. Lemma for Short-Circuited Line
⊢lem ∀V1 V2 R L G C w z.
let tlc = ((R,L,G,C):trans_line_const) in
[A1] (V2 = ––V1) ∧ [A2] w > &0 ∧ [A3] L > &0 ∧
[A4] C > &0 ∧ [A5] R = &0 ∧ [A6] G = &0 ∧ [A7] V1 ̸= Cx (&0)
⇒ line_impedance V1 V2 tlc w z = characteristic_impedance tlc w *

((–Cx(&2) * ii * V1 * csin(Cx (Im(propagation_constant tlc w)) * z)) /
(Cx(&2) * V1 * ccos (Cx(Im(propagation_constant tlc w)) * z)))

Every assumption in the above lemma is the same as that of Theorem 6.4. The
proof of Lemma 6.1 is mainly based on Theorems 1 and 2 provided in Table 4
and properties of the trancendental functions along with some complex arithmetic
reasoning.

6.2 Open-Circuited Line

When a transmission line is open at the load end, it is referred to as an open-
circuited transmission line. Since the terminal is characterized by an open circuit
configuration, the signal or current is unable to propagate beyond the open-circuited
point. Open-circuited transmission lines are employed in antenna design to model
the behavior of open-ended radiating devices. Figure 5 depicts an open-circuited
transmission line with an infinite load impedance, i.e., ZL = ∞.

𝑍𝑜𝑐

𝑧 = - 𝑙 𝑧 = 0

𝑙

𝑍0

𝐼𝐿= 0

𝑉𝐿

+

-

Figure 5: Open-Circuited Line [16]

An open-circuited transmission line forces the load current IL to be zero. There-
fore, by using Equation (20) we have:

IL = I(z)|z=0 = 0

V +

Z0
e−jβz − V −

Z0
ejβz|z=0 = 0
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V + + V −

Z0
= 0

Thus,
V − = V + (40)

Note that the load voltage VL appearing across the open circuit can be found from
Equation (17) using Equation (40):

VL = V (z)|z=0

= V +e−jβz + V −ejβz|z=0

= V + + V − = 2V + (41)

Everywhere else on the transmission line, the voltage and current are mathematically
expressed as [16]:

V (z) = V +(e−jβz + ejβz) = 2V +cos(βz)

I(z) = V +

Z0
(e−jβz − ejβz) = −2V +

Z0
jsin(βz) = 2V +

Z0
e−jπ/2sin(βz)

Next, we formally verify the open-circuited line in HOL Light as follows:

Theorem 6.5. Open-Circuited Line
⊢thm ∀V1 V2 R L G C w z.

let tlc = ((R,L,G,C):trans_line_const) in
[A1] (V2 = V1) ∧ [A2] w > &0 ∧ [A3] L > &0 ∧
[A4] C > &0 ∧ [A5] R = &0 ∧ [A6] G = &0 ∧ [A7] V1 ̸= Cx (&0)

⇒ line_impedance V1 V2 tlc w z =
ii * characteristic_impedance tlc w *

ccot (Cx (Im (propagation_constant tlc w)) * z)

Assumptions A1 ensures the condition for the open-circuited line. The rest of the
assumptions are the same as that of Theorem 6.4. Similar to Theorem 6.4, the proof
of the above theorem is mainly based on the following lemma:
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Lemma 6.2. Lemma for Open-Circuited Line
⊢lem ∀V1 V2 R L G C w z.

let tlc = ((R,L,G,C):trans_line_const) in
[A1] (V2 = V1) ∧ [A2] w > &0 ∧ [A3] L > &0 ∧
[A4] C > &0 ∧ [A5] R = &0 ∧ [A6] G = &0 ∧ [A7] V1 ̸= Cx (&0) ∧
⇒ line_impedance V1 V2 tlc w z = characteristic_impedance tlc w *

((Cx(&2) * V1 * ccos(Cx (Im (propagation_constant tlc w)) * z)) /
(––Cx(&2) * ii * V1 * csin (Cx (Im (propagation_constant tlc w)) * z)))

The proof of the above lemma is mainly based on the formally verified lemmas about
the exponential functions alongwith some complex arithmetic reasoning. This com-
pletes the formal analysis of the terminated, short-circuited and open-circuited trans-
mission lines. The details about the analysis can be found in the proof script [10].

7 Discussion
The main purpose of this work is the formal development of transmission line theory
within the sound core of a higher-order-logic theorem prover to analyze transmis-
sion systems. For our constructive formalization, we first formally analyzed the
variations of the line voltage and current utilizing the phasor representations of the
telegrapher’s equations because the phasor approach reduces the time-domain PDEs
to ODEs. In the verification of the ODEs, we proved lemmas about the derivatives
of the general solutions. One of the main challenges of the presented work was to
formally verify the general solutions for the time-domain PDEs. The process be-
gan by translating solutions from the phasor domain, where they are articulated as
complex-valued functions of frequency, into the time-domain as real-valued functions
to establish solutions for PDEs. In the HOL Light proof process, we subsequently
faced the requirement to transform the time-domain functions back into complex-
valued forms. This was essential because the time-domain PDEs are defined using
complex derivatives, and the challenge lays in adeptly employing these complex
derivatives during the proof procedure. We also proved the necessary lemmas about
the complex differentions of the general solutions with respect to the parameters z
and t. In addition, we provided proofs of the attenuation and phase constants for the
lossless line and some other theorems regarding exponential functions and complex
numbers in order to verify the correctness of the wave solutions for the time-domain
PDEs. Once we proved the required theorems and lemmas, the verification of the
correctness of the equations just took several lines of proof steps.

For example, the proofs of the general solutions of the wave equations for voltage
and current just took 19 and 22 lines, which clearly illustrates the benefit of the
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Formalized Theorems Proof Lines Page Numbers Woman Hours
Theorem 4.1 26 212 1
Theorem 4.2 25 212 1
Theorem 5.1 13 214 0.5
Theorem 5.2 25 214 0.5
Table 3. Lemma 1 4 215 0.5
Table 3. Lemma 2 33 215 1
Table 3. Lemma 3 4 215 0.5
Table 3. Lemma 4 57 215 1
Theorem 5.3 28 216 1
Theorem 5.4 49 216 1.5
Table 4. Theorem 1 34 218 3
Table 4. Theorem 2 37 218 4
Table 4. Theorem 3 81 218 3
Table 4. Theorem 4 85 218 7
Table 4. Theorem 5 146 218 2
Table 4. Theorem 6 220 218 3
Theorem 5.5 19 220 0.5
Lemma 5.1 61 220 20
Table 5. Lemma 1 23 221 3
Table 5. Lemma 2 46 221 5
Table 5. Lemma 3 25 221 4
Table 5. Lemma 4 33 221 7
Theorem 5.6 22 222 0.5
Lemma 5.2 82 224 10
Table 6. Lemma 1 54 223 4
Table 6. Lemma 2 32 223 6
Table 6. Lemma 3 59 223 5
Table 6. Lemma 4 38 223 9
Theorem 5.7 71 224 2
Theorem 5.8 107 224 3
Theorem 6.1 18 226 0.5
Theorem 6.2 70 227 3
Theorem 6.3 22 227 0.5
Theorem 6.4 33 229 0.5
Lemma 6.1 63 230 4
Theorem 6.5 48 231 0.5
Lemma 6.2 57 232 5

Table 7: Verification Details for Proven Theorems and Lemmas

233



Deniz, Rashid, Hasan and Tahar

formally verified lemmas and theorems. The amount of effort required for verifying
each individual theorem in terms of proof lines and the corresponding woman-hours
is presented in Table 7. It is noteworthy that the woman-hours needed to complete
proofs are dependent on both the number of lines of code and the complexity of the
proof. Consequently, there is no direct relation between the number of lines in the
proof script and the amount of time required in woman-hours. For example, the
verification process for the characteristic impedance of a distortionless line involves
a greater number of proof lines compared to the verification of the attenuation
constant. However, the woman-hours required for the former are actually less than
those needed for the latter. Another difficulty encountered in this formalization
pertains to the considerable level of user intervention. However, we developed several
tactics that automate certain parts of our proofs resulting in a reduction of the length
of proof scripts in many instances (e.g., reducing part of the code by around 240
lines) and make the proofs simpler and more compact. Examples of such tactics are
SHORT_TAC and EQ_DIFF_SIMP, which allowed us to simplify complex arithmetics
involved in the proof of the time-domain solutions. For instance, EQ_DIFF_SIMP is
constructed to efficiently deal with the repetitive patterns in our proof procedure by
consolidating them into a single tactic. This proves to be efficient in refining and
optimizing our overall approach. The main advantage of the conducted formal proofs
of the telegrapher’s equations is that all the underlying assumptions can be explicitly
written contrary to the case of paper-and-pencil proofs and proof-steps that are
mechanically verified using a theorem prover. In addition, the formalization of the
transmission line theory provides mathematicians and engineers with the ability
to modify and reuse the formal library in HOL Light, in contrast to conventional
manual mathematical analysis.

8 Conclusion

This paper advocates the usage of higher-order-logic theorem proving for the formal-
ization of the telegrapher’s equations and the verification of its general solutions. In
particular, we formalized the telegrapher’s equations and their alternate representa-
tions, i.e., wave equations in time and phasor domains using HOL Light. Further-
more, we verified the relationship between the telegrapher’s equations and the wave
equations in the phasor domain. Moreover, we constructed the formal proof for the
general solutions of the telegrapher’s equations in the phasor domain. Subsequently,
we proved the relation between the phasor and the time-domain functions in order
to formally verify the general solutions for the time-domain PDEs. Finally, in order
to demonstrate the usefulness of our formalization work, we formally analyzed sev-
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eral practical applications, including terminated, short-circuited and open-circuited
transmission lines. One of our future plans is to extend this formalization by for-
malizing the deviations of real circuits from the idealized model, with an aim of
applying it to practical applications in real-world scenarios. Another potential area
for future investigation involves analyzing the behavior of harmonics in transmission
lines using the Fourier transform [18].
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